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Chapter 2. Conservation of Energy 
 

Notes: 
• Most of the material in this chapter is taken from Young and Freedman, Chapters 

6 and 7. 

2.1 Work 
We have discussed forces at length in Chapter 1 and how we can use Newton’s Laws to 
solve problems involving them. In this chapter we introduce new quantities and concepts 
that are also related to forces and can advantageously be used to understand the dynamics 
of bodies and physical systems. The first quantity we study here is that of the work done 
on a body. In one-dimension or for rectilinear motion we define the work done on an 
object as 
 
 W = Fnets,  (2.1) 
 
where Fnet  is the net force acting on the body and s  its displacement (in meters). The 
units for work are therefore N ⋅m , or Joule ( J ; one Joule equals 1 Newton times 1 kg). In 
general, the work can be expressed as the scalar product of the three-dimensional 
versions of these two quantities 
 
 W = Fnet ⋅s.  (2.2) 
 
It is thus evident that the work is a scalar quantity. Although it was understood that in 
equation (2.1) both the force and the displacement are in one and the same orientation 
(e.g., along the positive and/or the negative x-axis ), it should be clear that in equation 
(2.2) Fnet  and s  are vectors that can have completely distinct orientations. If θ  is the 
angle between the orientations of Fnet  and s , then 
 
 W = Fnetscos θ( ),  (2.3) 
 
with, this time, Fnet = Fnet  and s = s . It follows from this that the work done on an object 
can either be positive (−π 2 <θ < π 2 ), negative (π 2 <θ < 3π 2 ), or zero (θ = ±π 2 ). 

2.2  Kinetic Energy and the Work-Energy Theorem 
Using equation (2.2) (or (2.3)) in conjunction with Newton’s Second Law it becomes 
obvious that the work is not only linked to the displacement but also to the velocity of the 
body under consideration. More precisely, since a non-zero net force tends to accelerate 
(or rather change) the speed of a body in the direction of the force according to  
 
 Fnet = ma  (2.4) 
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the work will be positive if the object is accelerated, negative if it is decelerated, and zero 
if its speed remain unchanged. But before we can go any further in studying the more 
complete relationship between velocity and work we must make a short mathematical 
interlude… 

2.2.1 Simple Derivatives and Integrals1 
We already know the relations between the position, velocity, and acceleration 
 

 

v = dr
dt

a = dv
dt

= d
2r
dt 2

.

 (2.5) 

 
It follows that given a form for the position vector as a function of time (i.e., r t( ) ) both 
the velocity and acceleration can be determined. For example, if we know that the 
position of a body is initially r0  at t = 0  and changes linearly with time, then 
 
 r t( ) = r0 + bt  (2.6) 
 
with b  a constant and  
 

 

v t( ) = d
dt
r0 + bt( )

= dr0
dt

+
d bt( )
dt

= 0 + b dt
dt

= b.

 (2.7) 

 
It would have in fact been simpler to write   
 
 r t( ) = r0 + vt  (2.8) 
 
to start with. Application of the second of equations (2.5) would reveal the acceleration to 
be zero since the velocity is constant. It is found that in general 
 

                                                
1 This section contains advanced mathematical concepts on which you will not be tested. 
You may therefore skip this section if you desire, except for equations (2.14) and (2.19), 
which will be used extensively in the future. 



 

 -    - 19 

 
d t n( )
dt

= ntn−1,  (2.9) 

 
and we find that the two derivatives in equation (2.7) correspond to the cases for n = 0  
and n = 1 . Other important derivatives include 
 

 

d
dt
cos ωt( ) = −ω sin ωt( )

d
dt
sin ωt( ) =ω cos ωt( )
d
dt
eat = aeat

d
dt
ln bt( ) = 1

t
,

 (2.10) 

 
where ω , a, and b  are constants. A brief study of equation (2.9) will quickly convince us 
that a constant acceleration a  requires that n = 2  since if we write (see equation (1.21) of 
Chapter 1) 
 

 r t( ) = r0 + v0t +
1
2
at 2  (2.11) 

  
with x0  and v0  the initial position and velocity at t = 0  (i.e., they are constants), then 
 

 

v t( ) = d
dt
r0 + v0t +

1
2
at 2⎛

⎝⎜
⎞
⎠⎟

= dr0
dt

+
d v0t( )
dt

+ 1
2
d at 2( )
dt

= 0 + v0
dt
dt

+ 1
2
a
d t 2( )
dt

= v0 +
1
2
a 2t( )

= v0 + at

 (2.12) 

 
and 
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a = d
dt
v0 + at( )

= dv0
dt

+
d at( )
dt

= 0 + a dt
dt

= a,

 (2.13) 

 
as should be expected. This process could be extended to more complicated systems by 
considering cases where n > 2 . 
 
One very useful set of equations can be obtained from this constant acceleration case  
 

 
a t( ) = a   (i.e., the acceleration is a constant)
v t( ) = v0 + at

r t( ) = r0 + v0t +
1
2
at 2

 (2.14) 

 
by eliminating the time from them. To do so we consider each orientation independently, 
such that for the x  direction   
 

 t = 1
ax

vx t( )− v0x⎡⎣ ⎤⎦. (2.15) 

 
We then insert this equation into the third of equations (2.14) 
 

 

x t( ) = x0 + v0x
v t( )− v0x⎡⎣ ⎤⎦

ax
+ 1
2
ax

v t( )− v0x⎡⎣ ⎤⎦
ax
2

2

= x0 +
v t( )− v0x⎡⎣ ⎤⎦

ax
v0x +

1
2
v t( )− v0x⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

= x0 +
1
2ax

v t( )− v0x⎡⎣ ⎤⎦ v t( ) + v0x⎡⎣ ⎤⎦,

 (2.16) 

 
or 
 

 x t( )− x0 =
vx
2 t( )− v0x2
2ax

 (2.17) 

 
and alternatively 
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 1
2
vx
2 t( )− v0x2⎡⎣ ⎤⎦ = ax x t( )− x0⎡⎣ ⎤⎦.  (2.18) 

 
It should also be noted that equations similar to equation (2.18) can be written for the y  
and z  directions such that (by summing the three) 
 

 1
2
v2 t( )− v02⎡⎣ ⎤⎦ = a ⋅ r t( )− r0⎡⎣ ⎤⎦.  (2.19) 

 
We will soon return to equation (2.19) and its application to problems involving work.    
 
Studying equations (2.9) and (2.10) we realize that given the result obtained for a 
derivative we can guess the original function on which the derivative was effected. This 
“reverse engineering” process is often called the “antiderivative” and is symbolically 
written as 
 
 F = f t( )dt∫ ,  (2.20) 
 
where it is said that the function F  is the “antiderivative” or “primitive” of the function 
f t( )  (conversely f t( )  is the derivative of F  and, as is more commonly the custom, 

equation (2.20) is referred to as an (indefinite) integral). We can therefore “guess” that 
 

 

t n dt∫ = t n+1

n +1
+ c

cos ωt( )dt∫ = 1
ω
sin ωt( ) + c

sin ωt( )dt∫ = −1
ω
cos ωt( ) + c

eat dt∫ = 1
a
eat + c

dt
t∫ = ln t( ) + d
= ln bt( ),

 (2.21) 

 
where ω , a, c,  and d = ln b( )  are constants. 
 
There is another important connection between integrals, a primitive, and its derivative. 
Let us consider again a function F t( )  and its derivative f t( ) , both a function of time as 
indicated. We seek to evaluate the following difference F t +τ( )− F t( ) . Let us further 
define  
 
 τ = nΔt,  (2.22) 
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where Δt  is an infinitesimal time interval and n  a very large integer. The equation we 
seek to evaluate can therefore be written as  
 
 F t +τ( )− F t( ) = F t + nΔt( )− F t( ).  (2.23) 
 
We now transform this equation as follows 
 

 

 

F t +τ( )− F t( ) = F t + nΔt( )− F t + n −1( )Δt( )⎡⎣ ⎤⎦
+ F t + n −1( )Δt( )− F t + n − 2( )Δt( )⎡⎣ ⎤⎦
+ + F t + Δt( )− F t( )⎡⎣ ⎤⎦,

 (2.24) 

 
which we slightly modify to 
 

 

 

F t +τ( )− F t( ) = F t + n −1( )Δt( ) + Δt( )− F t + n −1( )Δt( )⎡⎣ ⎤⎦

+ F t + n − 2( )Δt( ) + Δt( )− F t + n − 2( )Δt( )⎡⎣ ⎤⎦
+ + F t + Δt( )− F t( )⎡⎣ ⎤⎦.

 (2.25) 

 
However, we know from the definition of the derivative that 
 

 f t( ) ≡ lim
Δt→0

F t + Δt( )− F t( )
Δt

.  (2.26) 

 
Inserting equation (2.26) in equation (2.25) we have 
 

 
 

F t +τ( )− F t( ) = lim
Δt→0

f t + n −1( )Δt⎡⎣ ⎤⎦ + f t + n − 2( )Δt⎡⎣ ⎤⎦{
+ + f t( )}Δt,

 (2.27) 

 
or in a more compact form 
 

 F t +τ( )− F t( ) = lim
Δt→0

f t + iΔt( )Δt
i=0

n−1

∑ .  (2.28) 

 
We can appreciate that the summation on the right-hand side of equation (2.28) 
represents the “area under the curve” traced by the derivative f t( )  since f t + iΔt( )Δt  is 
the area contained in the “column” of height f t + iΔt( )  and base Δt . We can therefore 
state the fundamental result:  
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The area contained between “under” a curve f t( )  between the points t  and t +τ  is 
given by the subtraction of the primitive F t( )  of f t( )  at those same two points, i.e., the 
area equals F t +τ( )− F t( ) .  
 
Furthermore, since we earlier introduce the following notation to express the primitive as 
a function of its derivative (see equation (2.20)) 
 
 F = f t( )dt∫ ,  (2.29) 
 
we now write 
 
 F t +τ( )− F t( ) ≡ f λ( )dλ

t

t+τ

∫ .  (2.30) 

 
Equation (2.30) is meant to mathematically convey the exact words of the fundamental 
result enunciated above. For example, if f t( ) = t  and we want to determined the area it 
covers between t = 0  and t = τ , we first use the first of equations (2.21) with n = 1  to 
find that F t( ) = t 2 2 , and then 
 

 
t dt

0

τ

∫ =
t = τ( )2
2

−
t = 0( )2
2

= τ 2

2
.

 (2.31) 

 
This result is in perfect agreement with the common definition for the area contained 
within a triangle (i.e., the product of the base and the height divided by 2). 

2.2.2 Kinetic Energy 
We now return to equation (2.2) and define the displacement vector as the difference 
between the position at time t  and that at t = 0 . That is, 
 
 s = r t( )− r0,  (2.32) 
 
and in turn 
 
 W = Fnet ⋅ r t( )− r0⎡⎣ ⎤⎦.  (2.33) 
 
If we now insert equation (2.19) into equation (2.33) we get another important and 
fundamental result (this one for physics as opposed to mathematics)   
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Fnet ⋅ r t( )− r0⎡⎣ ⎤⎦ = ma ⋅ r t( )− r0⎡⎣ ⎤⎦

= 1
2
mv2 t( )− 1

2
mv0

2.
 (2.34) 

 
The quantity  
 

 K ≡ 1
2
mv2  (2.35) 

 
is called the kinetic energy of the body (particle) of mass m . We are now in a position to 
state the so-called work-energy theorem: the work done by the net force on a body 
equals the change in the body’s kinetic energy 
 

 W = K2 − K1
= ΔK .

 (2.36) 

 
In equation (2.36) the subscripts “1” and “2” correspond to start and end points between 
which the net force is applied and does work. We must, however, acknowledge that we 
arrived at this result through equation (2.19), which is itself based on the assumption that 
the acceleration, and therefore the net force, is constant. It is reasonable to ask whether 
this result connecting the work done on an object and the change in its kinetic energy is 
valid for the more general case where the acceleration is not constant but changes with 
position? 
 
We answer this question by considering the infinitesimal amount of work done by a net 
force Fnet  when applied on a body at position r1  over an infinitesimal distance Δr  
 
 ΔW = Fnet r1( ) ⋅ Δr.  (2.37) 
 
Whether the net force is constant or not we can calculate the total work over a 
macroscopic distance r2 = r1 + nΔr  with ( n  is once again a large integer) 
 

 W = lim
Δr→0

Fnet r1 + iΔr( ) ⋅ Δr
i=0

n−1

∑ . (2.38) 

 
This process is illustrated in Figure 1. We can now use the result given by equations 
(2.28) and (2.30) to write 
 
 W = Fnet ⋅drr1

r2∫ .  (2.39) 

 
That is, the total work done by a net force between two points equals the area covered by 
the curve defining the force between these two same points. 
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To prove that equation (2.36) applied generally we now consider the following relation 
between the acceleration and the velocity  
 

 

a ⋅dr = dv
dt

⋅dr

= dv
dt

⋅vdt

= 1
2
d
dt
v ⋅v( )dt,

 (2.40) 

 
and finally 
 

 a ⋅dr = 1
2
d v2( ). (2.41) 

  
We can then modify equation (2.39) with 
 

 
W = ma ⋅dr

r1

r2∫
= 1
2
m d v2( )

r1

r2∫ ,
 (2.42) 

 
which finally proves that 

Figure 1 – One-dimensional representation 
of the process described in equation (2.38). 
We see that the work done consists of the 
area under the curve traced by .  
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W = 1
2
mv2

2 − 1
2
mv1

2

= K2 − K1
= ΔK ,

 (2.43) 

 
with v1  and v2  the speed at r1  and r2 . It is important to emphasize that we arrived at 
equation (2.43), the work-energy theorem, without the requirement of a constant 
acceleration (or net force). 

2.3 Power 
Power has units of energy per time, or Joule per second or Watt in MKS. We can define 
the average power by considering an amount of work ΔW  and the time Δt  over which 
it is accomplished 
 

 Pav =
ΔW
Δt
. (2.44) 

 
By reducing the time interval to an infinitesimally small time dt  we can also define the 
instantaneous power with 
 

 
P = lim

Δt→0

ΔW
Δt

= dW
dt
.

 (2.45) 

 
Since the infinitesimal work is defined as (see equation (2.37) in the limit Δr→ 0 ) 
 
 dW = Fnet ⋅dr,  (2.46) 
 
we can write  
 
 P = Fnet ⋅v  (2.47) 
 
for the instantaneous power (since v = dr dt ). 

2.4 Exercises 
1. (Prob.  6.7 in Young and Freedman.) Two blocks are connected by a very light string 
passing over a massless and frictionless pulley (see Figure 2). Travelling at constant 
speed, the 20-N block moves 75 cm to the right and the 12-N block moves 75 cm 
downward. During this process, how much work is done (a) on the 12-N block by (i) 
gravity and (ii) the tension in the string? (b) On the 20-N block by (i) gravity, (ii) the 
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tension in the string, (iii) friction, and (iv) the normal force? (c) Find the total work done 
on each block. 
 
Solution. 
 
Since the 12-N block moves at constant speed, its acceleration a = 0  and the tension T  
in the string is T = 12 N . Since the 20-N block moves at constant speed the friction force 
fk  on it is to the left and fk = T = 12 N . 

 
(a) We use W = Fscos θ( )  for the work. For gravity on the 12-N block θ = 0  and 
 

 W = 12 N( ) 0.75 m( )cos 0( )
= 9.0 J.

 (2.48) 

 
For the tension the magnitude of the force is the same but θ = π  so W = −9.0 J . 
 
(b) For gravity on the 20-N block θ = π 2  and W = 0  since cos π 2( ) = 0 . For the 
tension θ = 0  and 
 

 W = 12 N( ) 0.75 m( )cos 0( )
= 9.0 J.

 (2.49) 

 
For the friction θ = π  and since fk = T = 12 N  we have W = −9.0 J . Finally for the 
normal contact force θ = −π 2  and W = 0 . 
 
(c) The net force on each block is zero, since their acceleration is also zero. It follows that 
the total work on each block must be zero. 
 
2. (Prob. 6.19 in Young and Freedman.) Use the work-energy theorem to work these 
problems. Neglect air resistance in all cases. (a) A branch falls from a 95-m tall redwood 
tree, starting from rest. How fast is it moving when it reaches the ground? (b) A volcano 
ejects a boulder directly upward 525 m into the air. How fast was the boulder moving just 
as it left the volcano? (c) A skier moving at 5.0 m/s encounters a long, rough horizontal 
patch of snow having coefficient of friction 0.22 with her skies. How far does she travel 
on this patch before stopping? (d) Suppose the rough patch of part (c) is only 2.9 m long. 

Figure 2 – Blocks-pulley 
arrangement for Problem 1. 
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How fast would the skier be moving when she reached the end of the patch? (e) At the 
base of a frictionless icy hill that rises at  25  above the horizontal, a toboggan has a 
speed of 12.0 m/s toward the hill. How far vertically above the base will it go before 
stopping? 
 
Solution. 
 
The work-energy theorem, equation (2.43), states that W = K2 − K1  in general, with 
K = mv2 2 . But when the forces are constant we further have W = Fnet ⋅s  (notice that 
there is no integral present). We will combine these two equations. 
 
(a) For the redwood branch K1 = 0 , since it is starting from rest. Because gravity is 
oriented downward, as is the motion of the branch, we can write 
 

 

W
m

= v2
2

2
= gs

= 9.8 m/s2( ) 95 m( )
= 931 J/kg,

 (2.50) 

 
which yields v2 = 43.2 m/s . 
 
(b) For the boulder K2 = 0  and the displacement is in a direction opposite that or gravity. 
We have 
 

 

W
m

= − v1
2

2
= −gs

= − 9.8 m/s2( ) 525 m( )
= −5145 J/kg,

 (2.51) 

 
which gives v1 = 101.4 m/s . 
 
(c) The only force acting on the skier is the friction force, which is directed against the 
direction of motion, and we also have K2 = 0 . We can thus write 
 

 
W
m

= − v1
2

2
= −µkgs

 (2.52) 
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or 
 

 

s = v1
2

2µkg

= 25.0 m2 /s2

2 ⋅0.22 ⋅9.8 m/s2

= 5.8 m.

 (2.53) 

 
(d) In this case K2 ≠ 0  and 
 

 
v2

2 = v1
2 − 2µkgs

= 25 m2 /s2 − 2 ⋅0.22 ⋅9.8 m/s2 ⋅2.9 m
=12.5 m2 /s2

 (2.54) 

 
or v2 = 3.53 m/s . 
 
(e) For the toboggan K2 = 0  and we write 
 

 

 

W
m

= − v1
2

2
= −gssin 25( )

 (2.55) 

 
or the distance it will travel on the inclined icy surface is 
 

 
 
s = v1

2

2gsin 25( ) .  (2.56) 

 
The vertical distance travelled is therefore 
 

 

 

y = ssin 25( )
= v1

2

2g

= 144 m2 /s2

2 9.8 m/s2( )
= 7.35 m.

 (2.57) 

  
3. (Prob. 6.102 in Young and Freedman.) On a winter day a warehouse worker is shoving 
boxes up a rough plank inclined at an angle α  from the horizontal. The plank is partially 
covered with ice, with more ice near the bottom of the plank than near the top, so that the 
coefficient of friction increases with distance x  along the plank: µ = Ax , where A  is a 
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positive constant and the bottom of the plank is at x = 0 . (For this plank the coefficients 
of kinetic and static friction are equal: µk = µs = µ .) The worker shoves a box up the 
plank so that it leaves the bottom of the plank at speed v1 . Show that when the box first 
comes to rest, it will remain at rest if 
 

 v1
2 ≥

3gsin2 α( )
Acos α( ) .  (2.58) 

 
Solution. 
 
The component of gravity along the plank and oriented against the direction of motion is 
mgsin α( ) , while the friction force, also oriented against the direction of motion, is 
f = µmgcos α( ) . The total work per unit mass is given by 

 

 

W
m

= 1
m

Fnet ⋅dr1

2

∫
= − gsin α( ) + Agcos α( )x⎡⎣ ⎤⎦1

2

∫ dx

= −g sin α( ) dx
1

2

∫ + Acos α( ) xdx
1

2

∫⎡
⎣⎢

⎤
⎦⎥

= −g sin α( ) x2 − x1( ) + Acos α( ) 1
2
x2
2 − x1

2( )⎡
⎣⎢

⎤
⎦⎥
,

 (2.59) 

   
but since x1 = 0  
 

 W
m

= −g sin α( )x2 +
A
2
cos α( )x22⎡

⎣⎢
⎤
⎦⎥
.  (2.60) 

 
On the other hand we can also express the total work with 
 

 W
m

= − v1
2

2
,  (2.61) 

 
and by equating equations (2.60) and (2.61) we have 
 

 A
2
gcos α( )x22 + gsin α( )x2 −

v1
2

2
= 0.  (2.62) 

 
We can solve this equation since it is a quadratic in x2 ; the solution is given by 
 

 x2 =
−b ± b2 − 4ac

2a
,  (2.63) 
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with  
 

 

a = A
2
gcos α( )

b = gsin α( )

c = − v1
2

2
.

 (2.64) 

 
We therefore have 
 

 x2 =
−gsin α( ) ± g2 sin2 α( ) + Agv12 cos α( )

Agcos α( ) .  (2.65) 

 
But since it must be that x2 > 0  we choose 
 

 x2 =
g2 sin2 α( ) + Agv12 cos α( ) − gsin α( )

Agcos α( ) . (2.66) 

 
However, for the box to stay at rest at the end of its travel we must have, from Newton’s 
Second Law, 
 
 Ax2mgcos α( )−mgsin α( ) ≥ 0,  (2.67) 
 
or 
 

 x2 ≥
sin α( )
Acos α( ) .  (2.68) 

 
Inserting equation (2.68) into equation (2.66) we find that 
 

 
g2 sin2 α( ) + Agv12 cos α( ) − gsin α( )

Agcos α( ) ≥
sin α( )
Acos α( )  (2.69) 

 
or 
 
 g2 sin2 α( ) + Agv12 cos α( ) ≥ 2gsin α( ).  (2.70) 
 
We can further transform this equation (squaring both sides) to get 
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 v1
2 ≥

3gsin2 α( )
Acos α( ) .  (2.71) 

2.5 Gravitational Potential Energy and Conservation of Mechanical 
Energy 

We know from some of the problems we previously worked out that gravity can do work 
on an object. That is, using equation (2.39), adapted for the gravitational force, we have 
 
 Wgrav = m g ⋅dr

1

2

∫ .  (2.72) 

 
We can easily simplify this equation by postulating that gravity is oriented along the 
negative y-axis  and write 
 

 

Wgrav = −mg ey ⋅dr1

2

∫
= −mg dy

1

2

∫
= −mg y2 − y1( ).

 (2.73) 

 
We should note that the above derivation assumes that the gravitational acceleration g  is 
the same (i.e., it is constant) for any position y  relative to the earth’s surface. This 
approximation is only valid as long as the distance between y  and the earth’s surface is 
insignificant in comparison to the radius of the earth (the mean radius is 6,371 km). 
 
If we define the gravitational potential energy at y  with 
 
 Ugrav = mgy,  (2.74) 
 
then we can write for the work done by gravity 
 

 
Wgrav = − Ugrav,2 −Ugrav,1( )

= −ΔUgrav.
 (2.75) 

 
Furthermore, we know from the work-energy theorem that, for cases where gravity is the 
only force acting on the body,  
 

 
Wgrav = K2 − K1

= ΔK .
 (2.76) 

 
Therefore combining equations (2.75) and (2.76) we find the fundamental result 
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 ΔK + ΔUgrav = 0,  (2.77) 
 
or 
 

 
K1 +Ugrav,1 = K2 +Ugrav,2

1
2
mv1

2 +mgy1 =
1
2
mv2

2 +mgy2.
 (2.78) 

 
The sum of the kinetic and gravitational energies mv2 2 +mgy  is called the total 
mechanical energy. It follows from equation (2.78) that, for such a close system, the 
total mechanical energy is a constant 
 

 E = 1
2
mv2 +mgy

= constant.
 (2.79) 

 
That is, the total mechanical energy is a conserved quantity. This leads to the statement 
(or theorem) of the conservation of mechanical energy: When only the force of gravity 
does work on a system, the total mechanical energy is conserved. 
 
Looking back at some of the problems we previously solved in this chapter that only 
involved gravity (e.g., the cases of the redwood tree and the boulder), it is clear that we 
have already been using the notion that the total mechanical energy is conserved to obtain 
solutions. But what happens when other forces beside gravity are at play? Does the 
conservation of mechanical energy still apply? 
 
To verify this we can easily generalize equation (2.72) to include any other forces beyond 
gravity and define the total work with 
 

 

W = Fother −mg( ) ⋅dr
1

2

∫
= Fother ⋅dr1

2

∫ −m g ⋅dr
1

2

∫
=Wother +Wgrav

=Wother +Ugrav,1 −Ugrav,2 .

 (2.80) 

 
Once again using equation (2.43) (i.e., the work-energy theorem) we find that 
 

 
K1 +Ugrav,1 +Wother = K2 +Ugrav,2

1
2
mv1

2 +mgy1 +Wother =
1
2
mv2

2 +mgy2.
 (2.81) 

 
Alternatively, we can write 
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 Wother = ΔK + ΔUgrav.  (2.82) 
 
That is, the work done by all forces other than gravity equals the change in the total 
mechanical energy of the system.  

2.6 Elastic Potential Energy 
It is possible to store energy, or to “acquire” potential energy, in ways different than by 
raising an object subjected to gravity (in that case, increasing the position y  above the 
earth’s surface increases the gravitational potential energy Ugrav = mgy ). For example, 
experiments show that a (moderate) stretching or compressing of a spring implies the 
presence of a restoring force  
 
 F = −kx,  (2.83) 
 
where k  is the spring’s force constant. At x = 0  the spring is neither stretched nor 
compressed and the force is zero, when x < 0  the spring is compressed and exerts a 
(positive) repulsive force, while when x > 0  an attractive (negative) force is present. This 
linear response of the spring given by equation (2.83), known as Hooke’s Law, is valid 
only as long as x  is small enough. This is probably the simplest example of an elastic 
force. We could, for example, similarly model the response of a rubber band. 
 
It is then straightforward to consider the work done by a spring with 
 

 

Wel = Fdx
1

2

∫
= −k xdx

1

2

∫
= − 1

2
k x2

2 − x1
2( ).

 (2.84) 

 
We can further associate this work with an energy kx2 2  pertaining to the spring. It 
should be clear that we are not dealing with a kinetic energy since there is no dependency 
on any velocity in equation (2.84). Instead this energy is a function of the (square of the) 
position x , not unlike (although not exactly the same) as is the case for gravity. We 
therefore define 
 

 Uel =
1
2
kx2  (2.85) 

 
as the elastic potential energy. As was the case for gravity (see equation (2.75) we write 
 
 Wel = −ΔUel.  (2.86) 
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It follows that for a system that includes gravity, a spring (or other media exhibiting 
elastic responses), and other forces we can generalize equations (2.81)      
 

 
K1 +Ugrav,1 +Uel,1 +Wother = K2 +Ugrav,2 +Uel,2

1
2
mv1

2 +mgy1 +
1
2
kx1

2 +Wother =
1
2
mv2

2 +mgy2 +
1
2
kx1

2
 (2.87) 

 
and equation (2.82) for the theorem of conservation of mechanical energy 
 
 Wother = ΔK + ΔUgrav + ΔUel.  (2.88) 

2.6.1 Exercises 
4. (Prob. 7.42 in Young and Freedman.) A 2.0-kg block is pushed against a spring of 
negligible mass and force constant k = 400  N/m, compressing it 0.22 m. The block is 
then released, and moves along a frictionless, horizontal surface then up an incline with 
slope  θ = 37.0  (see Figure 3). (a) What is the speed of the block as it slides along the 
horizontal surface after having left the spring? (b) How far does the block travel up the 
inclined plane before starting to slide back down?  
 
Solution. 
 
There are two forces at play in this problem: the restoring force of the spring and gravity. 
But these two forces are linked to corresponding potential energies. We can therefore use 
equation (2.87) (or (2.88)) with Wother = 0  to obtain a solution.  
 
(a) If we denote by “1” and “2” the physical conditions of the system before and after the 
mass is released, respectively, then we have 
 
 Uel,1 +Ugrav,1 + K1 =Uel,2 +Ugrav,2 + K2.  (2.89) 
 
But it should be clear that  
 
 K1 =Uel,2 = 0,  (2.90) 
 
since v1 = x2 = 0 , and that  
 
 Ugrav,1 =Ugrav,2 .  (2.91) 
  
It therefore follows that 
 

 1
2
kx1

2 = 1
2
mv2

2,  (2.92) 
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or 
 

 

v2 =
k
m
x1

= 400 N/m
2.0 kg

0.22 m

=3.1 m/s.

 (2.93) 

 
(b) We now denote by “3” the conditions when the block reaches its highest elevation on 
the inclined plane. We therefore write 
 
 Ugrav,2 + K2 =Ugrav,3 + K3,  (2.94) 
 
with or since v3 = 0  
 
 ΔUgrav = K2  (2.95) 
 
where ΔUgrav =Ugrav,3 −Ugrav,2 = mgΔy  and Δy  the change in the block’s position in the 
vertical direction. We thus write 
 

 

Δy = v2
2

2g

= 9.68 m2 /s2

2 ⋅9.8 m/s2

= 0.494 m.

 (2.96) 

 
However, we seek to find out how far on the incline the block gets to before coming to a 
stop. If we define this distance as Δl , then 
 

 
Δl = Δy

sin θ( )
= 0.821 m.

 (2.97) 

Figure 3 – Set up for Prob. 4. 
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2.7 Conservative and Non-conservative Forces 
Whenever an object moves up against gravity or a spring is compressed, energy is stored 
in what we call potential energy. Since we have conservation of mechanical energy, 
which is the sum of the potential and kinetic energies, this stored energy can later be used 
to generate, or be transferred to, kinetic energy. Such forces are called conservative 
forces. 
 
A conservative force has interesting properties. For example, we already know that the 
work done by such a force is given by the following relation (or definition) 
 
 W = Fc ⋅dr1

2

∫ ,  (2.98) 

 
where Fc  is the force under consideration. We also have established that the potential 
energy associated with the force is defined as (see equation (2.75)) 
 
 Uc,1 −Uc,2 = Fc ⋅dr1

2

∫ .  (2.99) 

 
It should be clear that this equation implies that the change in potential energy due to the 
action of the force is completely independent of the path the body traces in space. That is, 
the change in potential energy associated with a conservative force is only a function of 
the initial and final points of the path traced by the body. For example, if one raises an 
object by Δy  against gravity, then the increase in gravitational potential energy is mgΔy  
whether the object was lifted in a straight line or through a curved (and perhaps tortuous) 
path. An obvious consequence of this is that if the initial and final points are the same, 
then the change in potential energy is zero.  
 
2Another very interesting property of conservative forces is found if we consider the 
following equation (using Cartesian coordinates) 
 

 ∇Uc ≡
∂Uc

∂x
ex +

∂Uc

∂y
ey +

∂Uc

∂z
ez .  (2.100) 

 
The function ∇Uc  (note that it is a vector) is commonly known as the gradient of Uc . 
Now if we also consider that      
 
 dr = dxex + dyey + dzez ,  (2.101) 
 
then we have for the following integral 
 
                                                
2 The following discussion on conservative forces is based on advanced mathematical 
material on which you will not be tested. You may therefore skip this discussion if you 
desire, except for equations (2.100) and (2.105). 



 

 -    - 38 

 
∇Uc ⋅dr1

2

∫ = ∂Uc

∂x
ex +

∂Uc

∂y
ey +

∂Uc

∂z
ez

⎛
⎝⎜

⎞
⎠⎟
⋅ dxex + dyey + dzez( )

1

2

∫

= ∂Uc

∂x
dx + ∂Uc

∂y
dy + ∂Uc

∂z
dz

⎛
⎝⎜

⎞
⎠⎟1

2

∫ ,
 (2.102) 

 
since ex ⋅ex = ey ⋅ey = ez ⋅ez = 1  and ex ⋅ey = ex ⋅ez = ey ⋅ez = 0 . 
 
We should now step back for a moment and ask ourselves what would the total change 
dUc  be for the function Uc  as we go from the point r = xex + yey + zez  to the point 
r + dr = x + dx( )ex + y + dy( )ey + z + dz( )ez , if dr  is infinitesimally small? Clearly we 
would have to look at the rates with which Uc  changes along the x, y, and z  directions 
and multiply these rates with dx, dy, and dz , respectively. That is, we would have 
 

 dUc =
∂Uc

∂x
dx + ∂Uc

∂y
dy + ∂Uc

∂z
dz.  (2.103) 

 
Inserting this relation in equation (2.102) yields 
 

 
∇Uc ⋅dr1

2

∫ = dUc1

2

∫
=Uc,2 −Uc,1.

 (2.104) 

 
Comparing equations (2.99) and (2.104) we find the fundamental result 
 
 Fc = −∇Uc .  (2.105) 
 
That is, a conservative force equals the negative of the gradient of the corresponding 
potential energy. 
 
If, for example, we consider the gravitational force and the spring restoring force we have 
 

 

Ugrav = mgy
Fgrav = −∇Ugrav

= −mg∇y

= −mg ∂y
∂x
ex +

∂y
∂y
ey +

∂y
∂z
ez

⎛
⎝⎜

⎞
⎠⎟

= −mgey

 (2.106) 

  
and 
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Uel =
1
2
kx2

Fel = −∇Uel

= − 1
2
k∇ x2( )

= − 1
2
k

∂ x2( )
∂x

ex +
∂ x2( )
∂y

ey +
∂ x2( )
∂z

ez
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −kxex ,

 (2.107) 

 
respectively. We can verify that these results are in perfect agreement with the relations 
we previously obtained for these conservative forces.  
 
We finally note that there is a fair amount of freedom in defining a potential energy. Let 
us clarify this statement by assuming that we have Ugrav = mgy  for the gravitational 
potential energy of an object. Then according to equations (2.105) and (2.106) 
 

 
Fgrav = −∇Ugrav

= −mgey .
 (2.108) 

 
Now suppose that we redefine the gravitational potential energy with 
 

 
′Ugrav =Ugrav + A

= mgy + A,
 (2.109) 

 
where A  is a constant. We then find that 
 

 

′Fgrav = −∇ ′Ugrav

= −∇Ugrav −∇A
= −∇Ugrav

= Fgrav,

 (2.110) 

 
since the derivative of a constant is zero (i.e., ∇A = 0 ). Because the forces resulting from 
Ugrav  and ′Ugrav  are the same we see that adding a constant A  to the potential energy has 
absolutely no effect on the dynamics on the system (i.e., it does not cause an additional 
acceleration on the object). It is therefore said that a potential energy can only be defined 
up to a constant value.  
 
On the other hand, non-conservative forces do not share these characteristics. If we 
consider the kinetic friction force as an example, it is clear that the energy that will be 
dissipated from the friction as an object slides on a surface will be lost (to heat 
generation) and will not be available to the system at later times for mechanical work. 
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Furthermore, the amount of energy dissipated will be highly dependent on the path taken 
by the object. The longer the path the larger the amount of energy lost for mechanical 
energy. It therefore follows that we cannot associated a potential energy to a non-
conservative force nor can we define it as the gradient of some function. 
 
Nonetheless, non-conservative forces can be incorporated into the law of conservation of 
energy by incorporating the work they do on a system in the Wother  term included in 
equations (2.87) and (2.88). It is also possible to formulate things differently by 
considering the amount of heat generated by the energy dissipation (for a kinetic friction 
force, for example). One can then define a new term ΔUint , which accounts for the 
internal energy (this is what heat is, a form of an internal energy). More precisely, we 
write 
 
 ΔUint = −Wother .  (2.111) 
 
Equation (2.111) can actually be established experimentally. The law of conservation of 
energy can then be generally written as 
 
 K1 +U1 − ΔUint = K2 +U2  (2.112) 
 
or alternatively 
 
 ΔK + ΔU + ΔUint = 0.  (2.113) 

2.7.1 Exercises 
5. (Prob. 7.66 in Young and Freedman.) A truck with mass m  has a brake failure while 
going down an icy mountain road of constant downward slope angle α . Initially the 
truck is moving downhill at speed v1 . After careening downhill a distance L  with 
negligible friction, the truck driver steers the runaway vehicle onto a runaway truck ramp 
of constant upward slope angle β . The truck ramp has a soft sand surface for which the 
coefficient of rolling friction is µr . What is the distance the truck moves up the ramp 
before coming to a halt? Solve using energy methods. 
 
Solution. 
 
If we denote the initial and final states with “1” and “2”, respectively, then we can write 
 

 
K1 +Ugrav,1 +Wother = K2 +Ugrav,2

1
2
mv1

2 +mgy1 +Wother =
1
2
mv2

2 +mgy2.
 (2.114) 
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But we know that y1 = L sin α( )  and v2 = 0 , and if we define d  as the distance the truck 
moves up the ramp before stopping, then y2 = d sin β( )  and Wother = −µrmgcos β( )d . We 
now have 
 

 1
2
mv1

2 +mgL sin α( )− µrmgd cos β( ) = mgd sin β( ),  (2.115) 

 
and 
 

 d =
v1
2 2g( ) + L sin α( )

sin α( ) + µr cos β( ) .  (2.116) 

 
6. (Prob. 7.87 in Young and Freedman.) A proton with mass m  moves in one dimension. 
Its potential energy is given by U x( ) =α x2 − β x , where α  and β  are positive 
constants. The proton is released from rest at x0 =α β . (a) Show that the potential 
energy can be written as  
 

 U x( ) = α
x0
2

x0
x

⎛
⎝⎜

⎞
⎠⎟
2

− x0
x

⎡

⎣
⎢

⎤

⎦
⎥.  (2.117) 

 
Graph U x( ) . Calculate U x0( )  and thereby locate the point x0  on the graph. (b) 
Calculate v x( )  and give a qualitative description of the motion. (c) For what value of x  
is the speed of the proton maximum and what is that value? (d) What is the force on the 
proton when its speed is maximum? (e) Let the proton be released instead at x1 = 3α β . 
Locate x1  on the graph of U x( ) . Calculate v x( )  and give a qualitative description of the 
motion. (f) For each of the release points x0  and x1 , what are the maximum and 
minimum values of x  reached during the motion? 
 
Solution. 
 
(a) By factoring α x0

2  on the right-hand side of equation (2.117), while remembering that 
β =α x0  
 

 

U x( ) = α
x0
2
x0
2

x2
− α
x0x

= α
x0
2
x0
2

x2
− α
x0
2
x0
x

= α
x0
2
x0
2

x2
− x0
x

⎛
⎝⎜

⎞
⎠⎟
.

 (2.118) 
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It is clear that U x0( ) = 0 , while U x( )  is positive for x < x0  and negative when x > x0 . A 
graph for the potential energy is shown in Figure 4a. 
 
(b) At x0  the proton is released from rest, which implies that v x0( ) = K x0( ) = 0 , and 
since U x0( ) = 0  we find that the total mechanical energy of the proton is 
 
 E = K +U = 0.  (2.119) 
 
Since energy is conserved we have 
 
 K = −U,  (2.120) 
 
or 
 

 
v x( ) = −

2U x( )
m

= 2α
mx0

2
x0
x
− x0

2

x2
⎛
⎝⎜

⎞
⎠⎟
.
 (2.121) 

 
The proton moves in the positive x -direction, speeding up until it reaches a maximum 
speed, and then slows down but it never stops. The proton cannot be found at x < x0  
since the quantity under the square root would then be negative. It will therefore only be 
found where U x( ) < 0  when x > x0 . A graph of v x( )  is shown in Figure 4b. 
 
(c) The velocity will be at a maximum when the kinetic energy will also be maximum, 
which from equation (2.119) implies that the potential energy will then be at a minimum. 
A close examination of Figure 4a shows that the minimum for U x( )  happens when 
dU dx = 0 . We therefore calculate 
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(d) The maximum speed occurs at a point where = 0,
dU
dx

 and from Eq. (7.15), the force at this point  

is zero. 

(e) 1 0
3 ,x x=  and 

20

0

2
(3 ) .

9
U x

x
α= −  

2 2
0 0 0 0

2 2 21

0 0 0

2 2 2 2 2
( ) ( ( ) ( )) .

9 9

x xx xv x U x U x x xm m x xx x mx
α α αª º§ ·§ · § ·§ · § · § ·« »¨ ¸¨ ¸= − = − − = − −¨ ¸¨ ¸ ¨ ¸ ¨ ¸¨ ¸ ¨ ¸« »¨ ¸¨ ¸ © ¹ © ¹© ¹ © ¹© ¹ © ¹¬ ¼

-
 

The particle is confined to the region where 1( ) ( ).U x U x<  The maximum speed still occurs at 
0

2 ,x x=  

but now the particle will oscillate between 
1
x  and some minimum value (see part (f)). 

(f) Note that 1( ) ( )U x U x−  can be written as 

2

0 0 0 0
2 2

0 0

2 1 2
,

9 3 3

x x x x
x x x xx x

α αª º§ · § · ª º ª º§ · § · § ·« »− + = − −¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸ ¨ ¸« » « »¨ ¸ ¨ ¸« »© ¹ © ¹ © ¹¬ ¼ ¬ ¼© ¹ © ¹¬ ¼
 

which is zero (and hence the kinetic energy is zero) at 
0 1

3= =x x x  and 3
2 0

.x x=  Thus, when the particle 

is released from 
0

,x  it goes on to infinity, and doesn’t reach any maximum distance. When released from 

1
,x  it oscillates between 3

2 0
x  and 

0
3 .x  

EVALUATE:   In each case the proton is released from rest and ( ),iE U x=  where ix  is the point where it 

is released. When 
0ix x=  the total energy is zero. When 

1ix x=  the total energy is negative. ( ) 0U x →  

as ,x→ ∞  so for this case the proton can't reach x→ ∞  and the maximum x it can have is limited. 
 

 

 

Figure 7.87   
 Figure 4 – Curves for  and  in Problem 6. 
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dU
dx

= − α
x0
2
2x0

2

x3
− x0
x2

⎛
⎝⎜

⎞
⎠⎟

= − α
x0x

2
2x0
x

−1⎛
⎝⎜

⎞
⎠⎟ ,

  (2.122) 

 
which means that dU dx = 0  when x = 2x0 . The maximum speed is then 
 

 vmax =
α
2mx0

2 .  (2.123) 

 
(d) We can establish from equation (2.105) that 
 

 

F = −∇U

= − dU
dx
ex

⎛
⎝⎜

⎞
⎠⎟

= 0.

 (2.124) 

 
(e) At x1 = 3α β  the potential energy is  
 

 U x1( ) = − 2α
9x0

2 ,  (2.125) 

 
and from the law of conservation of energy 
 

 1
2
mv2 x( ) +U x( ) =U x1( ),  (2.126) 

 
since v x1( ) = 0 . It follows that  
 

 
v x( ) = 2

m
U x1( )−U x( )⎡⎣ ⎤⎦

= 2α
mx0

2
x0
x
− x0

2

x2
− 2
9

⎛
⎝⎜

⎞
⎠⎟
.
 (2.127) 

 
Since at x1 > 3x0  the quantity under the square root is negative, the proton is confined to 
x ≤ 3x0 , where U x( ) ≤U x1( ) . But we can see in Figure 4a that there is also a minimum 
value for x  below which U x( ) >U x1( ) ; the proton will therefore oscillate between that 
minimum location and x1 . 
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(f) When the proton is released at x0  we have 
 

 
−U x( ) = α

x0
2
x0
2

x2
− x0
x

⎛
⎝⎜

⎞
⎠⎟

= α
x0
2
x0
x

x0
x
−1⎛

⎝⎜
⎞
⎠⎟ ,

 (2.128) 

 
which means that the speed (and kinetic energy) will be zero at x0  and at x→∞ . The 
proton will therefore keep moving to more positive values of x  without stopping when 
released.  
 
When the proton is released at x1 = 3x0  we note that we can expand  
 

 
U x1( )−U x( ) = α

x0
2
x0
x
− x0

2

x2
− 2
9

⎛
⎝⎜

⎞
⎠⎟

= − α
x0
2
x0
x
− 1
3

⎛
⎝⎜

⎞
⎠⎟

x0
x
− 2
3

⎛
⎝⎜

⎞
⎠⎟ .

 (2.129) 

 
The speed (and kinetic energy) will therefore be zero at x1 = 3x0  (as we already knew) 
and x = 3x0 2 . The proton will then be oscillating between these two points, i.e., 
3x0 2 ≤ x ≤ 3x0 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


